SEANCE DE TECHNOLOGIE EXPERIMENTALE DUREE 2H (minimum) MISE EN EVIDENCE DU ROLE DE LA LEVURE BIOLOGIQUE EN VIENNOISERIE

Quels sont les ingrédients utilisés pour réaliser une brioche ?

Farine	• Eau	• Levures
Sel	Matière grasse	• oeuf

Les différentes étapes de la fabrication d'une brioche?

 Pétrissage 	• Repos	
• rabat	• pousse	• Cuisson

1. Mise en évidence des composants de la brioche :

Tests de caractérisation :

L'eau iodée est de couleur jaune-marron. En présence d'amidon, elle vire au bleu nuit.

L'acide nitrique est incolore. En présence de protéines, il devient jaune.

Le papier présente une tâche translucide lorsqu'il est mis en présence d'un corps gras.

Résultats de tests de caractérisation :

Tests réalisés Pâte testée		Eau iodée à froid	Acide nitrique	Frottis sur du papier
Pâte à brioche non	Couleur obtenue	Bleu nuit	Jaune	Tâche translucide
cuite (fin de pétrissage)	Déduction	Présence d'amidon (farine)	Présence de protéines (gluten de la farine et protéines de l'œuf)	Présence de corps gras
Pâte à brioche après	Couleur obtenue	Bleu clair	Jaune	Tâche translucide
cuisson	Déduction	Moins d'amidon présent	Présence de protéines	Présence de corps gras

Bilan: Que s'est-il passé? Lors du repos et /ou de la cuisson de la brioche, de l'amidon disparaît. Qu'est-ce qui aurait provoqué cette transformation ? Les levures pourraient consommer cet amidon. Le chauffage pourrait détruire l'amidon, ...

2. Observation de levure	s biologiaues e	et schema o	l'interprétation:
--------------------------	-----------------	-------------	-------------------

Au microscope : ×450

Ce sont des êtres vivants, champignons microscopiques unicellulaires, se développant naturellement sur la surface des fruits (ex. sur le grain de raisin) et des grains (de blé, de seigle, ...). (parfois levures en bourgeonnement visibles selon microscope)

3. Conditions d'action des levures

Protocole expérimental 1:

Matériel et ingrédients : Verre gradué, balance, tamis, couteau d'office, 3 tourtières Farine 100g, eau tiède (40°C) 65g, levure 5g, saccharose 4g

- Tamiser la farine. Diluer la levure avec l'eau. Mélanger tous les ingrédients et pétrir au batteur pendant 4 minutes.
- Diviser en 3 pâtons et bouler.
- Cuire un 1^{er} pâton immédiatement au four à sole T°250°C Réserver le 2^{ème} pâton dans le tour réfrigéré pendant 1 heure et cuire au four à sole T°250°C
- Réserver le 3^{ème} pâton 1 heure dans une étuve chauffée à 35°C et cuire au four à sole T°250°C

Résultats : Observer et remplir le tableau

Pâtons	1 ^{er}	2 ^{ème}	3 ^{ème}	
Aspect	Légèrement gonflé, absence	Peu développé, quelques	Développé, gonflé, alvéolé	
Volumineux, plat	d'alvéoles	alvéoles		

Conclusion:

Protocole expérimental 2 :

Matériel et ingrédients : Verre gradué, balance, tamis, couteau d'office, 3 tourtières Farine 100g, eau très chaude (90°C) 65g, levure 5g, saccharose 4g

- Tamiser la farine. Diluer la levure avec l'eau. Mélanger tous les ingrédients et pétrir au batteur pendant 4 minutes.
- Diviser en 3 pâtons et bouler.
- Cuire un 1er pâton immédiatement au four à sole T°C 250°C
- Réserver le 2^{ème} pâton dans le tour réfrigéré pendant 1 heure et cuire au four à sole T250°C
- Réserver le 3^{ème} pâton 1 heure dans une étuve chauffée à 35°C et cuire au four à sole T250°C

Résultats : Observer et remplir le tableau

Pâtons	1 ^{er}	2 ^{ème}	3 ^{ème}
Aspect	Aucun gonflement	Aucun gonflement	Aucun gonflement
Volumineux, plat	Absence d'alvéoles	Absence d'alvéoles	Absence d'alvéoles

Conclusion:

Protocole expérimental 3:

Matériel et ingrédients : Verre gradué, balance, tamis, couteau d'office, 3 tourtières Farine 100g, eau froide +4°C 65g, levure 5g, saccharose 4g

- Tamiser la farine. Diluer la levure avec l'eau. Mélanger tous les ingrédients et pétrir au batteur pendant 4 minutes.
- Diviser en 3 pâtons et bouler.

- Cuire un 1^{er} pâton immédiatement au four à sole T°C 250°C

 Réserver le 2^{ème} pâton dans le tour réfrigéré pendant 1 heure et cuire au four à sole T°250°C

 Réserver le 3^{ème} pâton 1 heure dans une étuve chauffée à 35°C et cuire au four à sole T°250°C

Résultats: Observer et remplir le tableau

Pâtons	1 ^{er}	$2^{ème}$	3 ^{ème}
Aspect	Très légèrement gonflé	Peu développé	Développé, quelques
Volumineux, plat			alvéoles

Conclusion:

4. Conditions de conservation/Stockage

Comparaisons de levures biologiques stockées dans différentes conditions :

Expériences	Levure n°1:	Levure n°2:	Levure n°3:	Levure n°4:
	Au frais, emballée	Au frais, non emballée	A T°C ambiante	A T°C ambiante
Constats			depuis 48 h, emballée	depuis 48 h, non
				emballée
Texture	ferme, friable une fois	Friable et plus sèche	Friable et sèche qui	Très friable et très
Solide, friable, liquide	pressée et qui colle	qui ne colle plus aux	ne colle plus aux	sèche
	aux doigts	doigts	doigts	
Couleur	Crème	Crème et par endroit	Couleur marron	Couleur marron
		marron	claire plus foncée par	
			endroit	

Conclusions:

5. Conditions d'utilisation des levures biologiques :

Que se passe-t-il si du sel (ou du sucre) est mis en présence de levures fraîches, micro-organismes riches en eau? La levure devient liquide.

6. les principales formes de commercialisations des levures et leurs utilisations:

	Aspects	Utilisations en pâtisserie	Conditionnement Coût d'achat	Modes d'utilisation
Levure biologique (fraîche ou pressée)	De couleur crème, sous forme de bloc compact	, , , , , , , , , , , , , , , , , , ,	En carton de 10Kg et paquet de 500g 1,34 €Kg	En général dilué avec de l'eau tiède Environ 20g au Kg de farine
Levure biologique déshydratée	Sèche en forme de vermicelle	Ce sont les mêmes que pour la levure biologique fraîche : Croissant, brioche, pain au lait, savarin	En sachet ou en boite hermétique 3,80 €le Kg	Elle doit être réhydratée dans une eau ou la T°C sera de 35 à 40°C Surtout utilisé dans les pays chaud et humides Environ 7 g au kilo de farine

MISE EN EVIDENCE DU ROLE DE LA LEVURE BIOLOGIQUE EN VIENNOISERIE POUR UNE CLASSE DE CAP DOCUMENT SYNTHESE DE LA SEANCE

1. Mise en évidence des composants de la brioche :

Dans la pâte à brioche non cuite en fin de pétrissage, on s'aperçoit que nous sommes en présence **d'amidon et de corps gras.**

Dans la pâte à brioche cuite, le test de l'eau iodée nous permet de constater que de **l'amidon** a disparu. En effet l'amidon est transformé par la levure biologique pour créer une **fermentation**.

2. Observation de levures biologiques :

Voir document élève

3. Conditions d'action des levures :

Protocole expérimental 1 :

Le froid ralentit **la fermentation** de la pâte de lever. **Les levures** sont au ralenti.

Le temps de repos après pétrissage est indispensable pour qu'une pâte lève.

Un temps de pousse est indispensable pour avoir une pâte bien alvéolée.

Protocole expérimental 2:

La chaleur (plus de 60 °C) tuent les levures.

Protocole expérimental 3:

Le froid inactive les levures, mais un retour à une température proche de 30 °C **les réactive**, elles n'ont donc pas été tuées. Mise au four trop tôt, une brioche ne lèvera pas car ses levures **n'auront pas le temps** de faire lever la pâte elles seront détruites par la chaleur.

Le froid **ralentit** la vie des levures et permet de retarder la fermentation, d'où l'utilisation **des armoires de fermentation contrôlée.**

Une pâte insuffisamment poussée demandera une cuisson plus lente, une pâte trop poussée demandera une cuisson rapide.

4. Conditions de conservation/Stockage

Les levures croûtent lorsqu'elles sont laissées à **l'air libre**. Il faut les conserver dans un endroit fermé, l'idéal étant leur **emballage d'origine.** Elles se conservent mieux au frais. Les levures souffrent en effet d'une déshydratation si celle-ci est trop forte elles perdent de **leur efficacité.**

5. Conditions d'utilisation des levures biologiques :

Que se passe-t-il si du sel (ou du sucre) était mis en présence de levures fraîches, micro-organismes riches en eau ? Les levures se déshydratent. Si le sel est en quantité importante, ces levures risquent de mourir en effet, le sel absorbe **l'humidité** de la levure. Il faut donc éviter de mettre en contact **le sel** avec **la levure**.

6. les principales formes de commercialisations des levures et leurs utilisations:

Les levures sont des micro-organismes utilisés pour fabriquer des produits alimentaires qui ont du goût.

Voir document élève

BILAN:

La fermentation alcoolique permet la production **d'alcool et de CO₂** ainsi que de composés volatiles conférant aux viennoiseries (et au pain) leurs qualités **odorantes, gustatives et de conservation.**La production de CO₂ joue un rôle sur les qualités **organoleptiques** des produits réalisés.
La levure donne aux pâtes levées son **développement** et sa structure poreuse et alvéolée grâce au gaz carbonique qu'elle dégage.